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From a simple example to the challenges of my thesis
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Federated learning: an optimization problem

Setting of federated learning:
A central server orchestrate the training.
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A central server orchestrate the training.

1Y
w, =argmin — > F;(w).

@. @ weRd N i=1
1en
— Foaye— a2 +y° Fy:x,y— (1 —sin(2))? + cos(y)

Central
Server

@en}
- 4

Figure 2: Examples of two objective functions

Each client i e N* have access to a “objective func-
tion” F; measuring the error of prediction for a
model w e R%.
4/33



Federated learning: an optimization problem

Setting of federated learning: We need to find the optimal model w, such that:
A central server orchestrate the training.

1Y
w, =argmin — > F;(w).

@. @ weRd N i=1
1en
— Foaye— 22 +y° Fy:x,y— (1 —sin(2))? + cos(y)

Central
Server

@en}
- 4

Figure 2: Examples of two objective functions

Each client i e N* have access to a “objective func- _
tion” F; measuring the error of prediction for a To find the optimal model w., we follow the slope
model weR?. (gradient descent).
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Framework for bidirectional
compression



Two challenges of Federated Learning

Goal : learning from a set of N clients [MMR*17] F: global cost function
F;: local loss
N: clients
d: dimension
N del
. w: mo
mg}i F(w):=— Z[EZ~D,- [0(z,w)]¢. D;: local data distribution
we i=1
Fi(w)

Global loss

Local loss

Distributed SGD: VkeN, wy = wy_1 -y (% 1L, gh(wi-1)).
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Fi(w)

==+ Challenge 1:
reduce communication costs

Global loss

S
(/d\\'n

~ Challenge 2
handle heterogeneous clients

Local loss
Distributed SGD: VkeN, wy = wy_1 -y (% 1L, gh(wi-1)).
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Bidirectional compression

S To limit the number of bits exchanged, we compress each signal before transmitting it.
~ Focus on bidirectional compression [LLTY20, PD20, TYL*19, ZHK19, PD21].
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Bidirectional compression

S To limit the number of bits exchanged, we compress each signal before transmitting it.
~ Focus on bidirectional compression [LLTY20, PD20, TYL*19, ZHK19, PD21].

~ We introduce two compression operators and Cyp 1.

Compressed distributed SGD:

1 ]\/Y .
VkeN, Wiy =wi -y (N chlp(gllc+1(wk)))-
i=1

Assumption 1 (One assumption to rule them all)

For dir € {up, }, there exists a constant wgi; € R} s.t. Cqir satisfies, for all z in RY :

E[Cair(2)]=2 and E[[Cair(2) - 2|*] < wair | 2] -

The compressors are said to be Unbiased with a Relatively Bounded Variance (URBV).
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Exemples of compressors

1. Sparsification based:

= Rand-k: keeps k coordinates,

= p-Sparsification: keeps each coordinate with probability p,

= p-partial participation: sends the complete vector with probability p,

= Sketching: using a random projection matrix into a lower-dimension space.
2. Quantization based on a codebook:

= (Stabilized) scalar quantization (coordinate compressed independently),
= Delaunay quantization.
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Impact of heterogeneity

Compressed distributed SGD: VkeN, wy = wi_1 —yCaun (% Zf-\ilcup(g,i(wlc,l))) .

% Optimal point of F
= Level set of F'
%  Optimal point of F} <

= Level set of F} K
AN

Figure 3: lllustration of heterogeneity on three clients, the objective functions are quadratic. We represent the

optimal points, the level set, and the opposite gradient at the optimal point.
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From a first theorem to a glance at contributions

Compressed distributed SGD: VkeN, wy = wi_; -y (% Z;llCup(g,"c(wk,l))) .

Assumption 2 (Bounded gradient at w.)

N There exists an optimal parameter w. minimizing F (not necessarily
AV (w) unique) and a constant B € Ry, such that % Zﬁ\il IVF;i(w.)|?=B2.

% Optimal point of F
—— Level sct of F
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Compressed distributed SGD: VkeN, wy = wi_; -y (% Z;N;l Cup(g,"c(wk,l ))) .

*
AVE (w))

Assumption 2 (Bounded gradient at w.)

There exists an optimal parameter w. minimizing F (not necessarily
unique) and a constant BeR.., such that - I |VF;(w.)|* = B>.

Assumption 3 (Noise over stochastic gradients computation)

The noise over stochastic gradients is zero-centered and its variance is
uniformly bounded by a constant o € R, such that for all k in N, for
all z in R we have: E[|g.(z) - VE(z)|?] < o?.
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Assumption 2 (Bounded gradient at w.)

There exists an optimal parameter w. minimizing F (not necessarily

* .
* f \\ \vF ) unique) and a constant BeR.., such that - I |VF;(w.)|* = B>.
VB, ) !
Assumption 3 (Noise over stochastic gradients computation)
The noise over stochastic gradients is zero-centered and its variance is
X Optimal poit of 7 uniformly bounded by a constant o € R., such that for all k in N, for
% Optimal point of F;

—— Level set of ;

all z in R we have: E[|g.(z) - VE(z)|?] < o?.

Theorem 1 (Convergence of compressed distributed SGD)

Under A1, A2, A3, if all (F;)}., are L-smooth, (% Zé\ilcup(g,i(wk))) is an unbiased stochastic
oracle of VF(wy_,) with variance bounded by:

2(Wdwn +1) (up +1)0? . 40 gy Wup B
N

; 2
+ 2L g || Wi — w [|* (1 + N).
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From a first theorem to a glance at contributions

Compressed distributed SGD: VkeN, wy = wi_; -y (% Z;N;l Cup(g,"c(wk,l ))) .

* * Relax the  uniform bound Remove the Bz—dependence
AVE (w))
Vs, )
% Optimal point of F
= Level set of F'
% Optimal point of F;
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From a first theorem to a glance at contributions

Compressed distributed SGD: VkeN, wy = wi_; -y (% Z;N;l Cup(g,"c(wk,l ))) .

* AV,’{:“,” Remove the w4yn-dependence in the dominant term
Vs, )
% Optimal point of F
= Level set of F'
% Optimal point of F;
—— Level set of F;

Theorem 1 (Convergence of compressed distributed SGD)
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From a first theorem to a glance at contributions

Compressed distributed SGD: VkeN, wy = wi_; -y (% Z;N;l Cup(g,"c(wk,l ))) .

* AV,’{W Going beyond , the worst-case assumption
Vs, )
% Optimal point of F
= Level set of F’
% Optimal point of F;
—— Level set of F;

Theorem 1 (Convergence of compryessed distributed SGD)

Under A1, A2, A3, if all (F;)}., are/L-smooth, (% Zf-\il(fup(g;;(wk))) is an unbiased stochastic
oracle of VF(wy_,) with variance pounded by:
2(wdwn + 1)<wup + 1)02 " 4wdwnwusz
N

; 2
+ 2L g | wi — w||* (1 + N)
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Contributions



Outline: bibliography

Artemis: tight convergence guarantees for bidirectional compression with heterogeneous
clients, P and Dieuleveut, under review at Journal of Parallel and Distributed Computing

. MCM: a preserved central model for faster bidirectional compression in distributed

settings, P and Dieuleveut, Neurips 2021

Convergence rates for distributed, compressed and averaged least-squares regression:
application to Federated Learning, P and Dieuleveut, under review at Journal of Machine
Learning Research
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l. Artemis and the memory
mechanism



Assumptions

We make standard assumptions on F:R% - R.
Assumption 4 (Cocoercivity)

All (gk)i, stochastic gradient are L-cocoercive in quadratic mean.
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Assumptions

We make standard assumptions on F:R% - R.
Assumption 4 (Cocoercivity)

All (gk)i, stochastic gradient are L-cocoercive in quadratic mean.

Assumption 5 (Strong-convexity)

F is strongly-convex.

Extension: We extend our results to the convex case.

Assumption 6 (Noise over stochastic gradients computation)

The noise over stochastic gradients for a mini-batch of size b, is bounded at w. :

Jo.eRy, VkeN, Vie[l,N], YweR?:  E[|gi(w.)-VF;i(w.)|*]<0o?/b.

[As in GLQ"19, DDB20]
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The memory mechanism to tackle heterogeneous clients

Compressed distributed SGD: wy = w1 -y, (% it C,,(81))

N

Consequence of clients’ heterogeneity: limy_, , o, g;'ﬁl(w*) 0.
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Consequence of clients’ heterogeneity: limy_, , o, g;'cH(w*) 0.
Goal: Compress a quantity that goes to 0

Solution: Compute (on the server and the worker independently) a “memory” h;C s.t.

hi —— VFi(w.).

k—o0

= The update equation becomes:

3 1 N . . .
Wi = Wi-1-YCy,, (N Zcup (8= hj—1) + h;c—l)
i=1

hi=hi_ +aC, (g-hi_,), (y: SGD step-size )

where a is the memory’s learning rate. [“: memory’s learning rate]

== Introducing this uplink memory mechanism is crucial to handle data heterogeneity,
see Theorem 2.
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Convergence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (wdwn+1)(wup+1)(ai+32)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

13/33



ergence for an L-smooth and p-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (wdwn+1)(wup+1)(ai+32)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

= Linear rate up to a constant of the order of

13/33



gence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (a)dwn+1)(a)up+1)(ai+B2)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

= Linear rate up to a constant of the order of

= The variance (Var) increases with the compression level.

13/33



gence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (a)dwn+1)(a)up+1)(ai+B2)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

= Linear rate up to a constant of the order of
= The variance (Var) increases with the compression level.

= When B? #0 (non-i.i.d. settings), if 02 =0, then using
memory (a #0) leads to linear convergence

13/33



gence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (a)dwn+1)(a)up+1)(ai+B2)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

= Linear rate up to a constant of the order of
= The variance (Var) increases with the compression level.

= When B? #0 (non-i.i.d. settings), if 02 =0, then using
memory (a #0) leads to linear convergence

= If B2=0 (i.i.d. settings), the memory is useless

13/33



gence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis)
Under A1-2 and A4-6, for a step size y under some
conditions, for a learning rate a and for any k in N,

2 ko: 2
E[|we — wi |2] < (1-yu)*Bias? + 2y — |
[ we - ws|“] < (1-yp) " Bias =

with:  Variant
a=0 (a)dwn+1)(a)up+1)(ai+B2)
a(wup+1)=1/2  (Wgwn +1)(Wup+1)07

= Linear rate up to a constant of the order of
= The variance (Var) increases with the compression level.

= When B? #0 (non-i.i.d. settings), if 02 =0, then using
memory (a #0) leads to linear convergence

= If B2=0 (i.i.d. settings), the memory is useless

= Recovers classical SGD rate in the absence of

compression

13/33



gence for an L-smooth and u-strongly convex F

Theorem 2 (Convergence of Artemis) Theorem 3 (Lower bound on the

variance for linear compressors)
Under A1-2 and A4-6, for a step size y under some

conditions, for a learning rate a and for any k in N, Under A1-2 and A4-6, for y, ayp, E
given in Theorem 2, for ©. the
E[[|wy - ws ||2] < (1-yp)*Bias? +2YW : distribution of wy.
H There exists a limit distribution 1y, o
with:  Variant s.t. for any k>1, for Cy a constant:
a=0 Odwn + 1) (Wup +1) (02 + B?
a(wyp+1)=1/2 ijszflgngiJrlgt(fi* ) Wa(Op, ) < (1-y)* Co.
Furthermore:

= Linear rate up to a constant of the order of E[ || wy — ws Hz] Een, [ — ws Hz]
k— oo v

= The variance (Var) increases with the compression level.
= When B? #0 (non-i.i.d. settings), if 02 =0, then using
: 2
memory (a #0) leads to linear convergence Evmry, [lw—we|] = Q(yVar/uN).

=0

which is lower bounded s.t.:

= If B2=0 (i.i.d. settings), the memory is useless

= Recovers classical SGD rate in the absence of
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= The variance (Var) increases with the compression level.

= When B? #0 (non-i.i.d. settings), if 02 =0, then using
memory (a #0) leads to linear convergence

= If B2=0 (i.i.d. settings), the memory is useless

= Recovers classical SGD rate in the absence of
compression

Theorem 3 (Lower bound on the
variance for linear compressors)

Under A1-2 and A4-6, for y, ayp, E
given in Theorem 2, for ©. the
distribution of wy.

There exists a limit distribution 1y, o
s.t. for any k>1, for Cy a constant:

Wa(Op, my,p) < (1 *Yﬂ)kco-
Furthermore:
2 2
E[|wi = w|"] ——— Euw~my, [Jw = w+ 7]
which is lower bounded s.t.:

Ewsny, [Jw=ws]*] = Q(yVar/uN).

=0

The quadratic increase in the
variance is not an artifact of the

proof!
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Experiments of synthetic dataset

= Left: illustration of the saturation when ¢ #0 and data is i.i.d.
= Right: illustration of the memory benefits when ¢ = 0 but with non-i.i.d. data.

—+— scp 0
. ——qsep |
- O ~—4— Diana -
= —— BigsaD | 3
['q;‘ —}— Artemis Ei/ —5
| |
577 ST
& &) —— sap
= S — QseD
a0 e10] —}— Diana
i) —4 2 _ 15| —+ Bigsep
—— Artemis
0 25 50 1) 100 0 100 200 300 400
Number of passes on data Number of passes on data
(a) Least-square reg. (i.i.d.): 0% #0 (b) Logisitc reg. (non-i.i.d.): 2 =0.

Figure 4: Synthetic datasets
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Experiments on two real datasets

= Left: almost homogeneous clients. = Stochastic gradient descent: o, # 0.

= Right: heterogeneous clients.

—— SGD 1 —— SGD
— —+—= QsGD — —— QSGD
/; —}— Diana /? —}— Diana
3 —0.5 —— BIQSGD §/ —— BiQSGD
LL4 —f— Artemis h‘ 2 —f— Artemis
| |
e _ o
310 Bl
M S
= =
ED —-1.5 ED
—4
10° 107 10° 107
Communicated bits Communicated bits
Figure 5: Superconduct (LSR), b=64 Figure 6: Quantum (LR), b =256
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Partial conclusion

Take-away 1
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Partial conclusion

Take-away 1

= Bidirectional compression to reduce the communication cost.

Take-away 2

= Primary factor: noise o, on the gradient computed on the optimal point.

= Key impact of memory on non-i.i.d. data.

Take-away 3

= Lower bound on the asymptotic variance.
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Il. MCM and the preserved update
equation




Classical approach vs new approach

Classical approach - degrade the model on the central server.

i l N .
W =Wr-1~YCy., (N > Cup (e (Wi ))) :
i=1

The gradient is taken at the point wy held by the central server
[LLTY20, PD20, TYL"19, ZHK19].
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Classical approach vs new approach

Classical approach - degrade the model on the central server.

wi = wi—1 —YC ‘dwn ( ZCUP(gk(wk ))) :

The gradient is taken at the point wy held by the central server
[LLTY20, PD20, TYL*19, ZHK19].

New approach - preserve the model on the central server.
N .
> Cup (81(10x-1))

N |
;CUP(gllc(wkl)))'

Wi = Wg—-1 —

Z\H

A»—-

N

wk = wk*l _,}/CYM\\H
The gradient is taken at a random point 1wy s.t. E[ | wy] = wy.
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What do we hope for? (using a constant step-size y)

Classical approach
logyo(F(wi) = F(ws))

0 f—f—F+—+—+—+— Hiterations
O\.1.2 3 4 5 6 :x10

N2 3456 L
L\ o
3\ : Ar’.c.emis
4N TE— . Diana
[ I S SGD

0
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What do we hope for? (using a constant step-size y)

Classical approach
logyo(F(wk) — F(w+))

0
- -1
» -2
» -3

New approach
logyo(F(wi) = F(w+))

f—F— Ftiterations
1234 . 3., 6., x10

- Artemis

- Diana/

: MEM

SGD
- log, o (#bits )
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The downlink memory mechanism for MCM

We introduce a downlink memory term (Hy) gen:

1. available on both clients and central server
2. the difference Q) between the model and this memory is compressed and exchanged

3. the local model is reconstructed from this information

= w1~y (L T Cup (8L (10-1)))

Wy =
Qr = wi—Hi )
wk = kal +CL1\\|1(Qk)

Hy =Hp 1+ adwncd\\'n(Qk)-
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The downlink memory mechanism for MCM

We introduce a downlink memory term (Hy) gen:

1. available on both clients and central server
2. the difference Q) between the model and this memory is compressed and exchanged

3. the local model is reconstructed from this information

= w1~y (L T Cup (8L (10-1)))

Wy =
Qr = wi—Hi )
wk = kal +CL1\\|1(Q]€)

Hy =Hp 1+ adwncd\\'n(Qk)-

== Introducing this memory mechanism is crucial to control the variance of the local
model y.

AWe still use the uplink memory term (required to tackle the heterogeneous settings). A

— This is MCM.
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Convergence theorem

Assumption 7 (Smoothness and convexity.)

F is convex, twice continuously differentiable and L-smooth.
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Theorem 4 (Convergence of MCM, convex case)
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Assumption 7 (Smoothness and convexity.)

F is convex, twice continuously differentiable and L-smooth.

Theorem 4 (Convergence of MCM, convex case)

2 \T
Under A1, A3, A7, for K in N, with a large enough step-size y = / (wufi%' denoting
Wi =% Yicg Wi, we have:

62 (wyp +1)0? Wy
E[F(wk)-F.]<2\/ 2+ —2 o( = )
[F(tx) = F.] V NbK K

e

dominant term lower order term

= independent of = depends on

= identical to Diana (uni-compression) = asymptotically negligible
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gence theorem

Assumption 7 (Smoothness and convexity.)

F is convex, twice continuously differentiable and L-smooth.

Theorem 4 (Convergence of MCM, convex case)

2 \T
Under A1, A3, A7, for K in N, with a large enough step-size y = / (wufi%' denoting
Wi =% Yicg Wi, we have:

52 (wyp +1)02 )
E[F(wg)-F.]<2\/ 22 ( = )
[F(x) - Fu] < V ok ATk

Moreover if 6> =0, we recover a faster convergence:

E[F(wg)-F.]=0(K").

Remark: this result is also extended to both strongly-convex and non-convex cases.
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Experiments in convex settings (using a constant step-size y)

—— SGD
—~ _1 —}— Diana — _1
/? —— Artemis /?
) —+ S
LT —2 T LT 9
3 5
~ ~ __ —— scb
El/ 3 Eﬂ/ 3 ~}— Diana
=1 =/ —}— Artemis
Y] [0} —+— Dore
'—‘O _4 '—o‘ _4 ——= MCM
—— R-MCM
0 50 100 150 200 10° 10
Number of passes on data Communicated bits
(a) X axis in # iterations (b) X axis in # bits

Figure 7: Quantum with b=400, y =1/L (Logistic regression).
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Experiments in non-convex settings

CIFAR-10
(LeNet, d=62e3,
16 bits-quantization

Heterogeneous EMNIST
(CNN, d=2e4,
4 bits-quantization

Fashion MNIST
MNIST (CNN, d=2e4, (FashionSimpleNet, d=4e5,

Nonconvex
4 bits-quantization . L
'ts-quantizati 4 bits-quantization

framework

with norm 2)

with norm 2)

with norm 2)

with norm 2)

Accuracy after ) o
300 epochs SGD: 99.0%
Diana: 98.9%
MCM: 98.8%
Artemis: 97.9%

Dore: 97.9%

SGD: 92.4%

Diana: 92.4%
MCM: 90.6%
Artemis: 86.7%
Dore: 87.9%

SGD: 99.0%

Diana: 98.9%
MCM: 98.9%
Artemis: 98.3%
Dore: 98.5%

SGD: 69.1%

Diana: 64.0%
MCM: 63.5%
Artemis: 54.8%
Dore: 56.3%

Train loss after SGD:0.025 SGD: 0.093 SGD: 0.026 SGD: 0.909
300 epochs

Diana: 0.034 Diana: 0.141 Diana: 0.031 Diana: 1.047

MCM: 0.033 MCM: 0.209 MCM: 0.030 MCM: 1.096

Artemis: 0.075 Artemis: 0.332 Artemis: 0.052 Artemis: 1.342

Dore: 0.072 Dore: 0.300 Dore: 0.048 Dore: 1.292
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Partial conclusion

Take-away 4

= New algorithm to perform bidirectional compression.

= Asymptotically same rate of convergence than unidirectional compression.

Take-away 5

= Local gradients computed on a “perturbed model” (more challenging).

Additional contributions of the article:

= Randomized-MCM with independent compressions: improves convergence in the quadratic
case.
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I1l. Beyond worst-case analysis




Back to the URBV assumption

S To limit the number of bits exchanged, we compress the uplink signal before transmitting it.
Big question: what is the impact of C on convergence?
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Compressed distributed SGD: Vk €N, wy = wi_; - % Z;N;IC(g,’;(wk,l ).

Assumption

There exists a constant w € R} s.t. C satisfies, for all z in R4 :

E[C(z)]=z and E[|C(2) —ZHZ] <ol z)?.

= To go beyond this worst-case assumption and provide a tighter analyse.

= Focus on the LSR framework, which is popular for fine-grained analyses.

Final goal: highlight the differences in convergence between several unbiased compression schemes
having the same variance increase.
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Back to the URBV assumption

S To limit the number of bits exchanged, we compress the uplink signal before transmitting it.
Big question: what is the impact of C on convergence?

Compressed distributed SGD: Vk €N, wy = wi_; - % Z;N;IC(g,’;(wk,l ).

Assumption

There exists a constant w € R} s.t. C satisfies, for all z in R4 :

E[C(z)]=z and E[|C(2) —ZHZ] <ol z)?.

= To go beyond this worst-case assumption and provide a tighter analyse.

= Focus on the LSR framework, which is popular for fine-grained analyses.

Simplified setting for this presentation:
= N=1 client.

,,,,,

well-defined model wy:

Vie{l,....K}, yi={xp, w.)+ek, with e, ~N(0,0%) .
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Comparing various compressors in diffe

5 compressors: 4 scenarios, 4 different behaviors.
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Comparing various compressors in different scenarios

5 compressors: 4 scenarios, 4 different behaviors.

0
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| 31 = l-quantiz. == 1-quantiz.
& = sparsif. = sparsif.

%%" = sketching —— sketching
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7] = partial part. -5 === partial part.
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logyq(k) logy(k)
Sketching is very bad, quantiz. is slightly worse.  All compressors are equivalent and behave well.
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All

Can we explain this four
different behaviors?
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Linear Stochastic Approximation

Definition 1 (Linear Stochastic Approximation, LSA)

Let wy eR? be the initialization, the linear stochastic approximation® recursion is defined as:
Wi = w1~ YVF(wi-1) +Y§p(wi-1-wx), keN, (LSA)

= y>0: step size,

n (&p)rent: Sequence of i.i.d. zero-centered random fields that characterizes the stochastic
oracle on VF(-).

LWhile in LSA literature, both the mean-field VF and the noise-field (&) are linear, we do not here consider
the noise fields to be linear.
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Linear Stochastic Approximation

Definition 1 (Linear Stochastic Approximation, LSA)

Let wy eR? be the initialization, the linear stochastic approximation® recursion is defined as:

Wk = We—1 ~YVF(Wr-1) + ¥ (wi-1 —ws), keN, (LSA)

= y>0: step size,

n (&p)rent: Sequence of i.i.d. zero-centered random fields that characterizes the stochastic
oracle on VF(-).

We assume F quadratic:

= Hp: its Hessian = u: its smallest eigenvalue.

For any k in N, with 0y = wy — w., we get equivalently:

Nk =I=YHp)Nk—1 +Y¢k(Nk-1), keN.

LWhile in LSA literature, both the mean-field VF and the noise-field (&) are linear, we do not here consider
the noise fields to be linear.
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Examples and challenge

Algorithm 1 (LMS with a single worker)
We have for all k e N:

w = We-1 =Y ((Wk-1, Xk ) = Vi) Xk
Equivalently, for weR%:

Ee(w) = (xpxg —E[x1 ] ) w + ((we, X)) = yie) Xk
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For any step-size y >0 and any k eN*, the resulting
sequence of iterates (wy ) xen Satisfies:

wi = wi-1 —¥Cr(gr(wk-1))-
Equivalently, for weR?:
$e(w) = VF(w) - Cr(gp(w))-

Most analyses of (LSA)
[Blub4, Lju77, LS83] assume either:

1. The field & is either linear [see
KT03, BMP12, LP21] i.e. for any
2,7 €R4,

k(2) = Ep(2') =Er(2-2).

2. The noise-field is Lipschitz in
squared expectation
[MBL11, Bacl4, DDB20, GP23].
i.e. for any z,z' e RY

E[[¢x(2) k()1 < Clz 2|

— Specificity and bottleneck of
compression: the resulting field does
not satisfy such assumptions.
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Definition of

Definition 2 (Additive and multiplicative
noise)

Under the setting of (LSA), for any k in N*:

§89=6(0) and &P zeRT - Ei(2) -4
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Definition of

Definition 2 (Additive and multiplicative Assumption (Second moment of the
noise)

multiplicative noise)
Under the setting of (LSA), for any k in N*:

IM;, M5 >0 s.t. for any i) in R%:
fadd

=&(0) and EPUt:zeRT o i(2) - 4. E[&(n) 2] < 2Mo| Hy 5|2 +4.A.

ELIEM (1) 1] < Mo | HY *n]l + 3Ma | HY *n]12.
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Under the setting of (LSA), for any k in N*: IM1, M, >0 s.t. for any 1 in R?:

1/2
§99:28(0) and EPMizeRY o £ (z) -3 1. E[JR(n)]2] < 2Ma | HY *n|? + 4A.
1/2 1/2
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Definition of

Definition 2 (Additive and multiplicative Assumption (Second moment of the
noise) multiplicative noise)

Under the setting of (LSA), for any k in N*: IM1, M, >0 s.t. for any 1 in R?:

S 6(0) and EMzeRT e E(2) -G L B[ ()P] s2Mef Hy Pl + 4.

ELEM (1) |2] < Mo | HY 7)) + 3 Mo | HY *7)2.

Holder-type 4r71[);on /

Classical “assumption
(new)

M =0 if the random field is linear,
M, #0 for quantization because:

E[[C(2) -C(2")*] < 12V/dmin(| 2], |2'])| 2= '] +3(w+1) 2~ 2|
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Definition of

Definition 2 (Additive and multiplicative

Assumption (Second moment of the
noise)

multiplicative noise)
Under the setting of (LSA), for any k in N*:

fadd

AM, M5 >0 s.t. for any 1 in R%:

=&(0) and EM R E(2) -0, L E[JER(n)|P] <2Mo | Hy Pn|2 +4A.

ELIEM (1) 1] < Mo | HY *n]l + 3Ma | HY *n]12.

Definition 3 (Ania’s covariance.)
Under (LSA), we define the covariance of the additive noise: €pia = [E[E*lldd@).f*l‘dd].
Theorem 5 (Asymptotic result, from [PJ92])

Under some assumptions. Consider a sequence (wy)ren+ produced in the setting of (LSA) for a
step-size (Y )ken+ S-t. Yx =1//K. Then we have:

. i/ _ _
\/E( wg — w*) mN(O’ lecaniuHFl)-
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ergence theorem

Theorem 6 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

2

E[F(wk-1)-F(w )]<i min M M +/ Te(e, -,H*1)+O( -1/2 1/4)
K-1 * SoK Y\/I—( ) ﬂ aniallp M Y .
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Convergence theorem

Theorem 6 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

—-1/2
LEn0] o

mln(M(, \/}7

E[F(Wx-1) - F(ws)] < Tr (Cania H') + O (™~ 1/2y1/*%)

1
2K
classical asymptotic noise term in CLT for

Bias term,”as in [BM13, DB15] (LSA)

asymptotically negligible for y=o0(1),
comes from multiplicative noise

[nk:wkfw*] [Q:ania: additive noise’s covariance] [Ilp: Hessianj (,u:min(eig(llp))]
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gence theorem

Theorem 6 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

E[F(wg-1) - F(w4)] <

(1H 0l ol ~ 1214
— Tr (Cania H )+O(u Y )

min| —————,
WK VY

1
2K

classical asymptotic noise term in CLT for
Bias term,”as in [BM13, DB15] (LSA)

asymptotically negligible for y=o0(1),

Remarks: S K
comes from multiplicative noise

= Asymptotically, the dominant term is \/Tr (Cania H5').

= Contrary to [BM13], the convergence rate is not necessarily independent of p.

= Examining the explicit formulas of Tr(Q‘amaH;l) allows to determine the convergence rate.

[nk:wkfw*] [Q:ania: additive noise’s covariance] [Ilp: Hessianj (,u:min(eig(llp))]
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Figure 8: Tr(Q‘amaH_l) -K=10%de [2,100], D:Diag((l/i4)?:1). Left: H diagonal. Right: H non-diagonal.
(Plain line: empirical values; dashed lines: theoretical)

Vike{l,...,K},xx ~N(0,H), with H=QDQT, D:Diag((l/i4 ?:1) and Q an orthogonal matrix.
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Partial conclusion

Summary of the contributions of the article:
= Analyze (LSA) under weak regularity assumptions of the noise field (&x)x.
= Provide a non-asymptotic theorem.
= Underline the key impact on convergence of the ania's covariance € ;.

= Describe the link between, the compressor C, the features’ covariance H and the ania's covariance
Qtania-
= Show how to compute the ania’s covariance €.

= Study the FL setting with heterogeneous clients.
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Summary of the contributions of the article:

Analyze (LSA) under weak regularity assumptions of the noise field (&x)k-
Provide a non-asymptotic theorem.
Underline the key impact on convergence of the ania’s covariance @ypiq.

Describe the link between, the compressor C, the features' covariance H and the ania's covariance
Q&lnizl-
Show how to compute the ania’s covariance @,pi,.

Study the FL setting with heterogeneous clients.

Examples of take-aways:

Take-away 6

Quantization not Lipschitz in squared expectation but satisfy a Hélder-type condition.

Convergence degraded, yet achieve a rate comparable to projection based compressors.

Take-away 7

Rand-1 and Partial Participation with probability (1/d): same variance condition.

= But PP is more robust to ill conditioned problem.
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Table 2: Summary of contributions.

Bi-compr. Heterogeneity LSR

l. v v Interaction between compression and heterogeneity
Il v (v') Asympt. cancels impact of down compression
[l (v) v Beyond worst-case analysis

|. Artemis  Bidirectional compression to reduce communication cost.
Key impact of memory on the convergence on non-i.i.d. data.

[l. MCM Asympt, same rate of convergence as unidirectional compression.
Underlines the importance to not degrade the global model.

Il Beyond the worst-case analysis of compression.
Analyze of the compressors’ covariance.
Differences between compressors that have the same variance.
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Thank you for your attention.
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Open directions

= Evaluating the type and degree of heterogeneity within a network of clients.

= Compression and neural network: impact in a non-convex setting.

= New schemas of compression with independant coordinate compression.
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Bulding statistical heterogeneous clients

Building non-i.i.d. and unbalanced datasets using a TSNE representation.
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A clue on the proof

We note 3. =C, (52X, C,, (gl —hi)+hi).
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A clue on the proof

We note 3. =C, (£ TN 1Cop (gL~ h})+hL).
With no memory (k! =0 for any k in N*):

E| gl <fZ[EHgk|| v ZEEHgA VE(w) |+ L(VF(we), wi - w.).

With memory:

Els

o
5k

A N . R B N ) )
"<z LElgi-ghl 1z N vEiw.)]
Co,

Nb '

+L(VF(wy), wy—w,)+

s (VF(wy), wi— w,) allows to use strong-convexity,

12 .
Hg,’C” makes appears the constant of heterogeneity B? |
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A practical algorithm?

Ghost cannot be implemented in practice!

== Which choice do we have?

Ghost )
Model compression

1 X ;
wk=wk—1—Y(ZCu (gllc(wk—l))) 1 X P
N we= iy el
i=1

Wi =wi-1-YC,,, ( Z (8k (- 1))) Wi =Cypn (Wi)
Update compression Model difference compression
1N o 1N L
Wi =Wk-1-Y N Zcup(gk(wk—l)) Wi =Wk-1—Y N Zcup(g/\‘(wkffl))
i=1

- N Wy = Wi— —C\\\” Wy — Wie—
Wy = Wi Yﬁm\,,( Z (g1 (- 1))) 1= Con )



rst attempts - Variance of the local iterate

= Update compression
= Model difference compression

= Model compression
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Figure 11: Comparing MCM on two datasets with three other algorithms using a non-degraded update,
y=1/L.
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Relation with randomized smoothing [DBW12, SBB+18]

Smoothed version of F:

Fo(w):~E[F(w+pX)], with X ~N(0,1).

VF (1) can be considered as an unbiased gradient of the smoothed function F, at point
Wi—1, With : Fy:w = E[F(w— wg_ + Wi_)] i.e:
VF(i-1) = VEp(wp-1)

Then E(VF(Wj_1), Wi—1 — W+ ) =E(VF,(wk_1), wx_1 — W) which is the quantity that appears
when developping the squared-norm of the update equation in the proof:

El|wi—ws* <E|wioy — we|* =2y (VF (1), wimy — wie) +Y°E 2

But two main differences:

= Objective function already smooth,

= Noise not Gaussian: we suffer from the noise because of compression and can not control
it.



In more details ...

Let:
= Vi=E[|w - wi|*] + 32y Logn? | wi - Hia |*
s O(y) = (wup+1) (1+64yLwg,®)

Theorem 7 (Convergence of MCM, convex case for any step-size y)
Under all previous assumptions, for k in N*, for any y < ymax, we have, for wy = % Zf;ol w;,

2 2

g ®
YE[F(wg1) ~F(12)] Vi - Ve 220
Vo +Y02‘1>(Y)

E|F(wy)—-Fy| <
= [F(wy) - Fu] Tk i



Comments on the variance term

For a constant v,

= the variance term is upper bounded by

y*o® 2
N7b ((Uup + ].)(]. + 64YL(!)L]\\ n ) .
= impact of the downlink compression is attenuated by a factor y. As y decreases, this
makes the limit variance similar to the one of Diana [MGTR19], i.e. without downlink
compression:
252
Nb
= This is much lower than the variance for previous algorithms using double compression:

(wup+1).

YZUZ

W((Uup + 1)(([)‘]\\” + 1) .



Comments on maximal step-size ymax

Maximal learning rate to ensure convergence:
i up dwn Y
Ymax = MIN(Ymax, Ymax> Y max)

where:

1. Ymax = (2L(1+wyup/N))™! corresponds to the classical constraint on the learning rate in the
unidirectional regime,

2. yﬂﬁ’& := (8Lw gy, )~ comes from the downlink compression,

-1 . . . .
3. y%ax = (8\/§Lwdwn\/8md\m +wup/N) is a combined constraint that arises when controlling the
variance term |wy — Hy|?.



Comments on maximal step-size ymax

Maximal learning rate to ensure convergence:
i up dwn Y
Ymax = MIN(Ymax, Ymax> Y max)

where:

1. Ymax = (2L(1+wyup/N))™! corresponds to the classical constraint on the learning rate in the
unidirectional regime,

2. yﬂﬁ’& := (8Lw gy, )~ comes from the downlink compression,

-1 . . . .
3. y%ax = (8\/§Lwdwn\/8md\m +wup/N) is a combined constraint that arises when controlling the
variance term |wy — Hy|?.
Remarks:

= constraints are weaker than in the “degraded” framework

Yr?l(:l;;e < (8L(1 'H”d\\n)(l +wup/N))

= if Wypdwn = o0 and wqwn ¥ Wyp @, the maximal learning rate for MCM is (ng/z)_l, while it is
(Lw?*)™! for Dore/Artemis.
Our Ymax is thus larger by a factor /o

-1
)



Summary of rates and complexities

Rates, complexities, and maximal step size for Diana, Artemis, Dore and MCM.

Table 3: Summary of rates on the initial condition, limit variance, asympt. complexities and ymax.

Problem Diana Artemis, Dore MCM
Lymax o< ) 1/(wup+1) 1/(‘Uup+1)("’d\\n+l) 1/(”&\\\\1+1)\/wup+1/\1/(wup+l)
Lim. var. o< y?0?/nx (wup+1) (wup +1) (Wiwn +1) (wup+1)(1+yLum,\m2)
Str.-convex Rate on init. cond. (1-yu)* (1-yp)* (1-yp)*
(59
Complexity (wup+1)/ueN  (wup+1)(waun+1)/ueN  (wup+1)/ueN
Convex Complexity (wup +1)/€? (wup + 1) (W +1) /€% (wup +1)/€?




Rand-MCM

— Consists in performing independent compressions for each device.
Theorem 8
Theorem 4 is still valid for Rand-MCM

= Improvement in Rand-MCM: because we average gradients at several random points, reducing
the impact of

= Dominating term is independent of . we expect to reduce only the second-order term.
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— Consists in performing independent compressions for each device.
Theorem 8
Theorem 4 is still valid for Rand-MCM

= Improvement in Rand-MCM: because we average gradients at several random points, reducing
the impact of

= Dominating term is independent of . we expect to reduce only the second-order term.

Theorem 9 (Convergence in the quadratic case)

Under A1, A3, A7, with u=0, if the function is quadratic, after running K >0 iterations, for any
Y £ Ymax, we have

yo?@R(y)

_ Vo
E|F —F,|<—
[F(m)-Fe] s 22+ T

with ®4(y) = (1+wyp) (1 ¢ 4L O (1 Sup )) and C=N for Rand-MCM, C=1 for MCM.



Rand-MCM

— Consists in performing independent compressions for each device.
Theorem 8
Theorem 4 is still valid for Rand-MCM

= Improvement in Rand-MCM: because we average gradients at several random points, reducing
the impact of

= Dominating term is independent of . we expect to reduce only the second-order term.

Theorem 9 (Convergence in the quadratic case)

Under A1, A3, A7, with u=0, if the function is quadratic, after running K >0 iterations, for any
Y £ Ymax, we have

_ Vo  yoloR(y)
E|F -F|<—+———=,
[F(wi) =Bl < 2o+ —p
with ® 1+ wy 1+ 2L Qdun and C= N for Rand-MCM, C=1 for MCM.
h ®Rd(y) = . L4lw d fe fe

= Quadratic functions: right hand term in ® multiplied by an additional y (% + % ).
= Randomization: further reduces by a factor N this term.



Backup on the compressors’
covariance




Impact of the compression on the additive noise covariance

The additive noise writes for any ke {1,...,K}, as:

E999L 2 ¢, (0) ™2 2GR (wx) - Cr(gr(ws)) = ~Co( (6 ) — yi) x6) = Ci(erx).

.S.

By definition: €ania := E[(£299)®2] = E[C(exx)®?]. Note also that C(egxr) *= exC(xx) for all
operators under consideration. Consequently

Cania = E[£C(x)®*] = 0 E[C(x)®°]. 3)

We study the covariance of C(xy), for xi a random variable with second-moment H, more generically
we study the covariance of C(E), for E a random vector with distribution pj; with second moment
E[E®*] =M.

Definition 4 (Compressor’ covariance on p))

We define the following operator € which returns the covariance of a random mechanism C acting on

a distribution pp; € P,
Cx Py - [Réxd

€ pm) — E[C(E)®],
where E ~ pp and the expectation is over the joint randomness of C and E, which are considered
independent, that is E[C(E)®*] = [LaE[C(e)®*]dpm(e).

¢:



Application to Federated Learning

Algorithm 3 (Distributed compressed LMS)

At any step k in {1,...,K}, each clients i in {1,...,N} observes an oracle gi.(-) of the gradient
of their local objective function F; and applies a random compression mechanism C,‘C()

For any step-size y >0 and any k € N*, the resulting sequence of iterates (wy )ren Satisfies:
1Y
W= Wi-1 =Y Y. Ci(gr(wi-1)).
i=1

Equivalently, for weR%: &(w) = VF(w)- + Y Cigh(w).
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For any step-size y >0 and any k € N*, the resulting sequence of iterates (wy )ren Satisfies:
18 i
wi = w1 Y~ Y Cilgi(wi-1))-
Nia
Equivalently, for weR%: &(w) = VF(w)- + Y Cigh(w).

Two scenarios:

= Heterogeneous covariances: for i,j in {1,..., N}, possibly H; # H; (covariate-shift),

= Heterogeneous optimal points: for i, in {1,..., N}, possibly w’ # w!
(optimal-point-shift).



Application to Federated Learning

Algorithm 3 (Distributed compressed LMS)

At any step k in {1,...,K}, each clients i in {1,...,N} observes an oracle gi.(-) of the gradient
of their local objective function F; and applies a random compression mechanism C,’C()

For any step-size y >0 and any k € N*, the resulting sequence of iterates (wy )ren Satisfies:

Wi = Wk-1 —7’% i;z\];clic(g;c(wkl))-
Equivalently, for weR%: &(w) = VF(w)- + Y Cigh(w).
Two scenarios:
= Heterogeneous covariances: for i,j in {1,..., N}, possibly H; # H; (covariate-shift),

= Heterogeneous optimal points: for i, in {1,..., N}, possibly w’ # w!
(optimal-point-shift).

Corollary 1 (covariate-shift)

Theorem 6 holds.



Heterogenerous covariances

How to compute the ania’s covariance using the compressor’s covariance?
We have for any clients i,j€{1,...,N}, w. = w], thus

[S) algo 1 Al i [
gadd det 2 ¢ (0) ¥ 3VF(w*)‘ﬁZCk(ng(w*))
izl

2

1N . )
== 2 Cel({xio ) = ¥i) xi)
NS

* LU

Next for all operators under consideration we have C!(eLx!) S €l Cl(xL), thus, with pp, denoting the
distribution of x;C with covariance H;, we have:

. 1 & 21 indep. feHt, 1 X
eama:[E[<fkdd>®2]:[El(NZC/«W"“)) ] = S Ll
i=1 i=1

= \

.
2N notatlon 0‘

- el T S () - (@

The operator €((C!, pr. )Y eneralizes the notion of compressor’s covariance (Definition 4).
p PH;)i—1) 8 p



Heterogeneous optimal points wi 1/2

By definition, we have:
£ w,) Def. 18Alg3

with g,‘;,* =(xlexl)(w.—w
Cania =

Vizj, CLLC]

ECL(g] )=V Fi(ws)

where pe, is the distribution of g!

HF(w—w*)——

N

2C (8l (w)). thus &3 Def 2 1

f;)+x,ic£;;. We thus have, for any keN:

N ®2
[E[(fidd)m] VF(l;/*) =0 l( ZC (gk* VFI'(ZU*)) ]

E[(Ci(gh.) - VFi(w.))™]

Z\H
no
X =

=
0

(E[CL(gk ) ®%] - VEi(w.)®?)

N

ewpm-ﬁﬂzw*

1l
—

™=

Zl% Z[-

b

(for any k).

2
0
WQ:((C’,PG )



Heterogeneous optimal points wi 2/2

In order to bound this quantity, following [DFB17], we make the following assumption.
Assumption 8

The kurtosis for the projection of the covariates x{ (or equivalently x,iC for any k) is bounded on any
direction z€ R, i.e., there exists x >0, such that:

Vie{l,...,N}, VzeRY, [E[(z,x{)4] SK(Z,HZ)Z

1) Before compression is possibly applied, the

Proposition 1 (Impact of client- noise remains structured, i.e., with covariance

heterogeneity.) proportional to H, in the case of concept-shift
Let W, be a random variable uniformly
distributed over {w',i€{1,...,N}}, thus such 2) Compared to the homogeneous case, the
that, Cov[W, ] = % Zﬁ-\il(w* —wi)®2, then: averaged second-order moment increases from
0?H to (xTr(HCov[W,])+0?)H.
N — shows impact of the dispersion of the

1 2 o
Nzeiﬁ(KTr(HCOV[W*D+U ) H. optimal points. (wl)¥ .
i=1



Heterogeneous optimal points w! with memory

Artemis with only uplink compression:

N
Wi = Wi-1 ~ Z up gk hk +hk

h;;?+l = h]lc + acup(gk - hk)'
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ARandom fields are no more i.i.d. == Definition 1 is no more fulfilled, invalidating Theorem 6. A



Heterogeneous optimal points w! with memory

Artemis with only uplink compression:
N

W/C:w/\'*] Z up gk hk +hk

h;;?+l = h]lc + acup(gk - hk) ’
ARandom fields are no more i.i.d. == Definition 1 is no more fulfilled, invalidating Theorem 6. A

Theorem 10 (CLT for concept-shift heterogeneity)

Under some assumption, with >0, for any step-size (Yi)gen* S-t. Y =1/vk. Then

L - _
1. (\/EﬁK—l)KN) —>N(0’ HFIQ:amaHFl)'

2. €L =C((C, Pe!); N.), where pg is the distribution of g,"cv* - VF;i(ws).



Heterogeneous optimal points w! with memory

Artemis with only uplink compression:
N ) ) ]
Wi = Wk-1—Y—= Zcup(gllc* h;c) + h;c
N i3
h;;?+l = h]lc + acup(g]ic - h;c) ’
ARandom fields are no more i.i.d. == Definition 1 is no more fulfilled, invalidating Theorem 6. A
Theorem 10 (CLT for concept-shift heterogeneity)

Under some assumption, with >0, for any step-size (Yi)gen* S-t. Y =1/vk. Then
Z 1 oo _
1. (\/EﬁK—l)KN) m-/\/‘(o’ HFICaniaHFl)'

ania —

2. € =C((Cl,per)iL,), where pe is the distribution ofg,"cy* - VF;i(ws).

1. Settings of heterogeneous optimal points (wi)ll1 convergence still impacted by heterogeneity
but with smaller additive noise’s covariance as 0’ < ©;.

2. Deterministic gradients (batch case), we case O} =0.

3. Recover asymptotically the results stated by Theorem 6 in the general setting of i.i.d. random
fields (&k(Mk=1)) ken® -



Experiments

Covariate-shift Concept-shift

Synthetic dataset Real datasets Synthetic dataset
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Figure 12: Logarithm excess loss of the Polyak-Ruppert iterate iterations for N =10 clients.
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