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General introduction



From a simple example to the challenges of my thesis

Figure 1: Automatic plant identification from
photos using the mobile app [Pl@ntNet].

Goal of machine learning:
Find a mathematical relationship between the input
(here the images) and the output (here the name of
the plant).

Paradigm of my thesis: data is not centralized on a
single location.
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Find a mathematical relationship between the input
(here the images) and the output (here the name of
the plant).

Paradigm of my thesis: data is not centralized on a
single location.

Privacy Communication cost

Data heterogeneity

Goal of my thesis:
Focus simultaneously on two challenges: reducing the
cost of communication and considering a
heterogeneous setting.
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Federated learning: an optimization problem

Setting of federated learning:
A central server orchestrate the training.

Central
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To find the optimal model w∗, we follow the slope
(gradient descent).
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Framework for bidirectional
compression



Two challenges of Federated Learning

Goal : learning from a set of N clients [MMR+17]

min
w∈Rd

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(w) ∶= 1

N

N

∑
i=1

Ez∼Di
[ℓ(z, w)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fi (w)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

F : global cost function
Fi : local loss

N : clients
d : dimension

w : model
Di : local data distribution

Global loss

Local loss ⋯

F(w) ∶= 1
N ∑

N
i=1 Fi(w)

Fi F2 FN

Distributed SGD: ∀k ∈N, wk =wk−1−γ( 1
N ∑

N
i=1 g i

k(wk−1)).
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Bidirectional compression

↬ To limit the number of bits exchanged, we compress each signal before transmitting it.
↦ Focus on bidirectional compression [LLTY20, PD20, TYL+19, ZHK19, PD21].

↦ We introduce two compression operators Cdwn ↧ and Cup ↥.
Compressed distributed SGD:

∀k ∈N, wk+1 =wk −γCdwn(
1

N

N

∑
i=1

Cup(g i
k+1(wk))) .

Assumption 1 (One assumption to rule them all)

For dir ∈ {up,dwn}, there exists a constant ωdir ∈R∗+ s.t. Cdir satisfies, for all z in Rd :

E[Cdir(z)] = z and E[∥Cdir(z)− z∥2] ≤ωdir ∥z∥2 .

The compressors are said to be Unbiased with a Relatively Bounded Variance (URBV).
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Exemples of compressors

1. Sparsification based:
• Rand-k: keeps k coordinates,
• p-Sparsification: keeps each coordinate with probability p,
• p-partial participation: sends the complete vector with probability p,
• Sketching: using a random projection matrix into a lower-dimension space.

2. Quantization based on a codebook:
• (Stabilized) scalar quantization (coordinate compressed independently),
• Delaunay quantization.
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Impact of heterogeneity

Compressed distributed SGD: ∀k ∈N, wk =wk−1−γCdwn ( 1
N ∑

N
i=1Cup(g i

k(wk−1))) .
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Figure 3: Illustration of heterogeneity on three clients, the objective functions are quadratic. We represent the
optimal points, the level set, and the opposite gradient at the optimal point.
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From a first theorem to a glance at contributions

Compressed distributed SGD: ∀k ∈N, wk =wk−1−γCdwn ( 1
N ∑

N
i=1Cup(g i

k(wk−1))) .
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Assumption 2 (Bounded gradient at w∗)

There exists an optimal parameter w∗ minimizing F (not necessarily
unique) and a constant B ∈R+, such that 1

N ∑
N
i=1 ∥∇Fi (w∗)∥2 =B 2 .

Assumption 3 (Noise over stochastic gradients computation)

The noise over stochastic gradients is zero-centered and its variance is
uniformly bounded by a constant σ ∈R+, such that for all k in N, for
all z in Rd we have: E[∥gk(z)−∇F(z)∥2] ≤σ2.

Theorem 1 (Convergence of compressed distributed SGD)
Under A1, A2, A3, if all (Fi )N

i=1 are L-smooth, Cdwn ( 1
N ∑

N
i=1Cup(g i

k(wk))) is an unbiased stochastic
oracle of ∇F(wk−1) with variance bounded by:
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2

N
) .

9 / 33



From a first theorem to a glance at contributions

Compressed distributed SGD: ∀k ∈N, wk =wk−1−γCdwn ( 1
N ∑

N
i=1Cup(g i

k(wk−1))) .

−∇F1(w∗)

−∇F2(w∗)

−∇F3(w∗)

4.25

4.50

4.75

0.25

0.50

1.00

1.50

2.00

2.00

0.75

1.00

1.50

2.00

1.25

1.50

2.00

2.50

3.0
0

3.00

Optimal point of F

Level set of F

Optimal point of Fi
Level set of Fi

Assumption 2 (Bounded gradient at w∗)

There exists an optimal parameter w∗ minimizing F (not necessarily
unique) and a constant B ∈R+, such that 1

N ∑
N
i=1 ∥∇Fi (w∗)∥2 =B 2 .

Relax the uniform bound Remove the B 2-dependence

Assumption 3 (Noise over stochastic gradients computation)

The noise over stochastic gradients is zero-centered and its variance is
uniformly bounded by a constant σ ∈R+, such that for all k in N, for
all z in Rd we have: E[∥gk(z)−∇F(z)∥2] ≤σ2.

Theorem 1 (Convergence of compressed distributed SGD)
Under A1, A2, A3, if all (Fi )N

i=1 are L-smooth, Cdwn ( 1
N ∑

N
i=1Cup(g i

k(wk))) is an unbiased stochastic
oracle of ∇F(wk−1) with variance bounded by:

2(ωdwn+1)(ωup+1)σ2

N
+

4ωdwnωupB 2

N
+2Lωdwn∥wk −w∗∥2(1+

2

N
) .

9 / 33



From a first theorem to a glance at contributions

Compressed distributed SGD: ∀k ∈N, wk =wk−1−γCdwn ( 1
N ∑

N
i=1Cup(g i

k(wk−1))) .

−∇F1(w∗)

−∇F2(w∗)

−∇F3(w∗)

4.25

4.50

4.75

0.25

0.50

1.00

1.50

2.00

2.00

0.75

1.00

1.50

2.00

1.25

1.50

2.00

2.50

3.0
0

3.00

Optimal point of F

Level set of F

Optimal point of Fi
Level set of Fi

Assumption 2 (Bounded gradient at w∗)

There exists an optimal parameter w∗ minimizing F (not necessarily
unique) and a constant B ∈R+, such that 1

N ∑
N
i=1 ∥∇Fi (w∗)∥2 =B 2 .

Remove the ωdwn-dependence in the dominant term

Assumption 3 (Noise over stochastic gradients computation)

The noise over stochastic gradients is zero-centered and its variance is
uniformly bounded by a constant σ ∈R+, such that for all k in N, for
all z in Rd we have: E[∥gk(z)−∇F(z)∥2] ≤σ2.

Theorem 1 (Convergence of compressed distributed SGD)
Under A1, A2, A3, if all (Fi )N

i=1 are L-smooth, Cdwn ( 1
N ∑

N
i=1Cup(g i

k(wk))) is an unbiased stochastic
oracle of ∇F(wk−1) with variance bounded by:

2(ωdwn+1)(ωup+1)σ2

N
+

4ωdwnωupB 2

N
+2Lωdwn∥wk −w∗∥2(1+

2

N
) .

9 / 33



From a first theorem to a glance at contributions

Compressed distributed SGD: ∀k ∈N, wk =wk−1−γCdwn ( 1
N ∑

N
i=1Cup(g i

k(wk−1))) .

−∇F1(w∗)

−∇F2(w∗)

−∇F3(w∗)

4.25

4.50

4.75

0.25

0.50

1.00

1.50

2.00

2.00

0.75

1.00

1.50

2.00

1.25

1.50

2.00

2.50

3.0
0

3.00

Optimal point of F

Level set of F

Optimal point of Fi
Level set of Fi

Assumption 2 (Bounded gradient at w∗)

There exists an optimal parameter w∗ minimizing F (not necessarily
unique) and a constant B ∈R+, such that 1

N ∑
N
i=1 ∥∇Fi (w∗)∥2 =B 2 .

Going beyond the worst-case assumption

Assumption 3 (Noise over stochastic gradients computation)

The noise over stochastic gradients is zero-centered and its variance is
uniformly bounded by a constant σ ∈R+, such that for all k in N, for
all z in Rd we have: E[∥gk(z)−∇F(z)∥2] ≤σ2.

Theorem 1 (Convergence of compressed distributed SGD)
Under A1, A2, A3, if all (Fi )N

i=1 are L-smooth, Cdwn ( 1
N ∑

N
i=1Cup(g i

k(wk))) is an unbiased stochastic
oracle of ∇F(wk−1) with variance bounded by:

2(ωdwn+1)(ωup+1)σ2

N
+

4ωdwnωupB 2

N
+2Lωdwn∥wk −w∗∥2(1+

2

N
) .

9 / 33



Contributions



Outline: bibliography

I. Artemis: tight convergence guarantees for bidirectional compression with heterogeneous
clients, P and Dieuleveut, under review at Journal of Parallel and Distributed Computing
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settings, P and Dieuleveut, Neurips 2021

III. Convergence rates for distributed, compressed and averaged least-squares regression:
application to Federated Learning, P and Dieuleveut, under review at Journal of Machine
Learning Research
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I. Artemis and the memory
mechanism



Assumptions

We make standard assumptions on F ∶Rd →R.

Assumption 4 (Cocoercivity)

All (gi
k)

N
i=1 stochastic gradient are L-cocoercive in quadratic mean.

Assumption 5 (Strong-convexity)

F is strongly-convex.

Extension: We extend our results to the convex case.
Assumption 6 (Noise over stochastic gradients computation)

The noise over stochastic gradients for a mini-batch of size b, is bounded at w∗:

∃σ∗ ∈R+, ∀k ∈N, ∀i ∈ J1, NK, ∀w ∈Rd ∶ E[∥gi
k(w∗)−∇Fi (w∗)∥2] ≤σ2

∗/b .

[As in GLQ+19, DDB20]
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The noise over stochastic gradients for a mini-batch of size b, is bounded at w∗:

∃σ∗ ∈R+, ∀k ∈N, ∀i ∈ J1, NK, ∀w ∈Rd ∶ E[∥gi
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The memory mechanism to tackle heterogeneous clients

Compressed distributed SGD: wk =wk−1−γCdwn
( 1

N ∑
N
i=1Cup(g i

k))

Consequence of clients’ heterogeneity: limk→+∞ g i
k+1(w∗) ≠ 0.

Goal: Compress a quantity that goes to 0
Solution: Compute (on the server and the worker independently) a “memory” hi

k s.t.

hi
k ÐÐÐ→

k→∞
∇Fi (w∗) .

⇒ The update equation becomes:

wk =wk−1−γCdwn (
1

N

N

∑
i=1

Cup(g
i
k −hi

k−1)+hi
k−1)

hi
k = hi

k−1+αCup(g
i
k −hi

k−1) ,

where α is the memory’s learning rate.
Ô⇒ Introducing this uplink memory mechanism is crucial to handle data heterogeneity,
see Theorem 2.

γ: SGD step-size

α: memory’s learning rate
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Convergence for an L−smooth and µ−strongly convex F

Theorem 2 (Convergence of Artemis)

Under A1-2 and A4-6, for a step size γ under some
conditions, for a learning rate α and for any k in N,

E[∥wk −w∗∥2] ≤ (1−γµ)k Bias2+2γ
Var

µN
,

with: Variant Var
α = 0 (ωdwn+1)(ωup+1)(σ2

∗+B 2)
α(ωup+1) = 1/2 (ωdwn+1)(ωup+1)σ2

∗

• Linear rate up to a constant of the order of Var

• The variance (Var) increases with the compression level.
• When B 2 ≠ 0 (non-i.i.d. settings), if σ2

∗ = 0, then using
memory (α ≠ 0) leads to linear convergence

• If B 2 = 0 (i.i.d. settings), the memory is useless
• Recovers classical SGD rate in the absence of

compression
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Theorem 3 (Lower bound on the
variance for linear compressors)

Under A1-2 and A4-6, for γ,αup,E
given in Theorem 2, for Θk the
distribution of wk .
There exists a limit distribution πγ,α

s.t. for any k ≥ 1, for C0 a constant:

W2(Θk ,πγ,v) ≤ (1−γµ)kC0 .

Furthermore:
E[∥wk −w∗∥2]ÐÐÐ→

k→∞
Ew∼πγ,v [∥w −w∗∥2]

which is lower bounded s.t.:
Ew∼πγ,v [∥w −w∗∥2] =

γ→0
Ω(γVar/µN) .
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The quadratic increase in the
variance is not an artifact of the
proof!
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Experiments of synthetic dataset

• Left: illustration of the saturation when σ2
∗ ≠ 0 and data is i.i.d.

• Right: illustration of the memory benefits when σ2
∗ = 0 but with non-i.i.d. data.
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(a) Least-square reg. (i.i.d.): σ2
∗ ≠ 0
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(b) Logisitc reg. (non-i.i.d.): σ2
∗ = 0.

Figure 4: Synthetic datasets
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Experiments on two real datasets

• Left: almost homogeneous clients.
• Right: heterogeneous clients.

• Stochastic gradient descent: σ∗ ≠ 0.
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Figure 5: Superconduct (LSR), b = 64
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Figure 6: Quantum (LR), b = 256
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Partial conclusion

Take-away 1

• Bidirectional compression to reduce the communication cost.

Take-away 2

• Primary factor: noise σ∗ on the gradient computed on the optimal point.
• Key impact of memory on non-i.i.d. data.

Take-away 3

• Lower bound on the asymptotic variance.
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II. MCM and the preserved update
equation



Classical approach vs new approach

Classical approach - degrade the model on the central server.

wk =wk−1−γCdwn (
1

N

N

∑
i=1

Cup(g i
k(wk−1))) .

The gradient is taken at the point wk held by the central server
[LLTY20, PD20, TYL+19, ZHK19].

New approach - preserve the model on the central server.

wk =wk−1−γ
1

N

N

∑
i=1

Cup (g i
k(ŵk−1))

ŵk = ŵk−1−γCdwn (
1

N

N

∑
i=1

Cup (g i
k(ŵk−1))) .

(1)

The gradient is taken at a random point ŵk s.t. E[ŵk ∣wk] =wk .
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What do we hope for? (using a constant step-size γ)

Classical approach
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The downlink memory mechanism for MCM

We introduce a downlink memory term (Hk)k∈N:

1. available on both clients and central server
2. the difference Ωk between the model and this memory is compressed and exchanged
3. the local model is reconstructed from this information

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wk =wk−1−γ( 1
N ∑

N
i=1Cup(g i

k(ŵk−1)))
Ωk =wk −Hk−1

ŵk =Hk−1+Cdwn(Ωk)
Hk =Hk−1+αdwnCdwn(Ωk).

(2)

Ô⇒Introducing this memory mechanism is crucial to control the variance of the local
model ŵk .
△! We still use the uplink memory term (required to tackle the heterogeneous settings). △!

Ô⇒ This is MCM.
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Convergence theorem

Assumption 7 (Smoothness and convexity.)

F is convex, twice continuously differentiable and L-smooth.

Theorem 4 (Convergence of MCM, convex case)

Under A1, A3, A7, for K in N, with a large enough step-size γ =
√

δ2
0N b

(ωup+1)σ2K
, denoting

w̄K = 1
K ∑

K−1
i=0 wi , we have:

E[F(w̄K )−F∗] ≤ 2

√
δ2

0(ωup+1)σ2

N bK
+O(

ωupωdwn

K
) .

Moreover if σ2 = 0, we recover a faster convergence:

E[F(w̄K )−F∗] =O(K−1) .
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dominant term
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Experiments in convex settings (using a constant step-size γ)
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Figure 7: Quantum with b = 400, γ = 1/L (Logistic regression).
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Experiments in non-convex settings

Nonconvex
framework

MNIST (CNN, d=2e4,
4 bits-quantization

with norm 2)

Fashion MNIST
(FashionSimpleNet, d=4e5,

4 bits-quantization
with norm 2)

Heterogeneous EMNIST
(CNN, d=2e4,

4 bits-quantization
with norm 2)

CIFAR-10
(LeNet, d=62e3,

16 bits-quantization
with norm 2)

Accuracy after
300 epochs SGD: 99.0% SGD: 92.4% SGD: 99.0% SGD: 69.1%

Diana: 98.9% Diana: 92.4% Diana: 98.9% Diana: 64.0%
MCM: 98.8% MCM: 90.6% MCM: 98.9% MCM: 63.5%

Artemis: 97.9% Artemis: 86.7% Artemis: 98.3% Artemis: 54.8%
Dore: 97.9% Dore: 87.9% Dore: 98.5% Dore: 56.3%

Train loss after
300 epochs SGD:0.025 SGD: 0.093 SGD: 0.026 SGD: 0.909

Diana: 0.034 Diana: 0.141 Diana: 0.031 Diana: 1.047
MCM: 0.033 MCM: 0.209 MCM: 0.030 MCM: 1.096

Artemis: 0.075 Artemis: 0.332 Artemis: 0.052 Artemis: 1.342
Dore: 0.072 Dore: 0.300 Dore: 0.048 Dore: 1.292
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Partial conclusion

Take-away 4

• New algorithm to perform bidirectional compression.
• Asymptotically same rate of convergence than unidirectional compression.

Take-away 5

• Local gradients computed on a “perturbed model” (more challenging).

Additional contributions of the article:

• Randomized-MCM with independent compressions: improves convergence in the quadratic
case.
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III. Beyond worst-case analysis



Back to the URBV assumption

↬ To limit the number of bits exchanged, we compress the uplink signal before transmitting it.
Big question: what is the impact of C on convergence?
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• Focus on the LSR framework, which is popular for fine-grained analyses.

Final goal: highlight the differences in convergence between several unbiased compression schemes
having the same variance increase.
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E[C(z)] = z and E[∥C(z)− z∥2] ≤ω∥z∥2 .

• To go beyond this worst-case assumption and provide a tighter analyse.
• Focus on the LSR framework, which is popular for fine-grained analyses.

Simplified setting for this presentation:
• N = 1 client.
• The client accesses K in N∗ i.i.d. observations (xk , yk)k∈{1,...,K} ∼D⊗K , such that there exists a

well-defined model w∗:
∀k ∈ {1, . . . ,K}, yk = ⟨xk , w∗⟩+εi

k , with εk ∼N (0,σ2) .
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Comparing various compressors in different scenarios

5 compressors: 4 scenarios, 4 different behaviors.
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Linear Stochastic Approximation

Definition 1 (Linear Stochastic Approximation, LSA)

Let w0 ∈Rd be the initialization, the linear stochastic approximation1 recursion is defined as:

wk =wk−1−γ∇F(wk−1)+γξk(wk−1−w∗), k ∈N, (LSA)

• γ > 0: step size,
• (ξk)k∈N∗ : sequence of i.i.d. zero-centered random fields that characterizes the stochastic

oracle on ∇F(⋅).

We assume F quadratic:
• HF : its Hessian • µ: its smallest eigenvalue.

For any k in N, with ηk =wk −w∗, we get equivalently:

ηk = (I−γHF )ηk−1+γξk(ηk−1), k ∈N.

1While in LSA literature, both the mean-field ∇F and the noise-field (ξk) are linear, we do not here consider
the noise fields to be linear.
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Examples and challenge

Algorithm 1 (LMS with a single worker)

We have for all k ∈N:
wk =wk−1−γ(⟨wk−1, xk⟩− yk)xk ,

Equivalently, for w ∈Rd :
ξk(w) = (xk x⊺k −E[x1x⊺1 ])w +(⟨w∗, xk⟩− yk)xk .

Algorithm 2 (Centralized compressed LMS)

At any step k in {1, . . . ,K}, we have an oracle gk(⋅) of the
gradient of the objective function F and a random
compression mechanism Ck(⋅).
For any step-size γ > 0 and any k ∈N∗, the resulting
sequence of iterates (wk)k∈N satisfies:

wk =wk−1−γCk(gk(wk−1)) .

Equivalently, for w ∈Rd :
ξk(w) =∇F(w)−Ck(gk(w)) .
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gradient of the objective function F and a random
compression mechanism Ck(⋅).
For any step-size γ > 0 and any k ∈N∗, the resulting
sequence of iterates (wk)k∈N satisfies:

wk =wk−1−γCk(gk(wk−1)) .

Equivalently, for w ∈Rd :
ξk(w) =∇F(w)−Ck(gk(w)) .
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2. The noise-field is Lipschitz in
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[MB11, Bac14, DDB20, GP23].
i.e. for any z, z′ ∈Rd

E[∥ξk(z)−ξk(z′)∥2] ≤C∥z − z′∥2 .

Ô⇒ Specificity and bottleneck of
compression: the resulting field does
not satisfy such assumptions.
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Definition of Cania

Definition 2 (Additive and multiplicative
noise)

Under the setting of (LSA), for any k in N∗:

ξadd
k ∶= ξk(0) and ξmult

k ∶ z ∈Rd ↦ ξk(z)−ξadd
k .
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1 (η)∥2] ≤M1∥H 1/2

F η∥+3M2∥H 1/2
F η∥2.

Classical assumption Hölder-type assumption
(new)

M1 = 0 if the random field is linear,
M1 ≠ 0 for quantization because:
E[∥C(z)−C(z′)∥2] ≤ 12

√
d min(∥z∥,∥z′∥)∥z − z′∥+3(ω+1)∥z − z′∥2
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Definition 3 (Ania’s covariance.)

Under (LSA), we define the covariance of the additive noise: Cania = E[ξadd
1 ⊗ξadd

1 ] .

Theorem 5 (Asymptotic result, from [PJ92])

Under some assumptions. Consider a sequence (wk)k∈N∗ produced in the setting of (LSA) for a
step-size (γK )K∈N∗ s.t. γK = 1/

√
K . Then we have:

√
K (wK −w∗)

LÐÐÐÐ→
K→+∞

N (0, H−1
F CaniaH−1

F ) .
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Convergence theorem

Theorem 6 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wk)k∈N∗ produced by the setting of (LSA),
for a constant step-size γ verifying some assumptions. Then for any horizon K , we have

E[F(wK−1)−F(w∗)] ≤
1

2K
( min

⎛
⎝
∥H−1/2

F η0∥
γ
√

K
,
∥η0∥√

γ

⎞
⎠
+
√

Tr(CaniaH−1
F )+O (µ−1/2γ1/4) )

2

.

Bias term, as in [BM13, DB15]
classical asymptotic noise term in CLT for

(LSA)

asymptotically negligible for γ = o(1),
comes from multiplicative noise

ηk =wk −w∗ Cania: additive noise’s covariance HF : Hessian µ =min(eig(HF ))
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2

.

Bias term, as in [BM13, DB15]
classical asymptotic noise term in CLT for

(LSA)

asymptotically negligible for γ = o(1),
comes from multiplicative noiseRemarks:

• Asymptotically, the dominant term is
√

Tr(CaniaH−1
F ).

• Contrary to [BM13], the convergence rate is not necessarily independent of µ.
• Examining the explicit formulas of Tr(CaniaH−1

F ) allows to determine the convergence rate.

ηk =wk −w∗ Cania: additive noise’s covariance HF : Hessian µ =min(eig(HF ))
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Computing Tr(CaniaH−1)
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Figure 8: Tr(CaniaH−1) - K = 103,d ∈ J2,100K, D =Diag((1/i 4)di=1). Left: H diagonal. Right: H non-diagonal.
(Plain line: empirical values; dashed lines: theoretical)

∀k ∈ {1, . . . ,K}, xk ∼N (0, H), with H =QDQT , D =Diag((1/i 4)di=1) and Q an orthogonal matrix.
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• Significantly impacts the limit
distribution with a rate proportional
to Tr(H−1).

• Same variance but different behaviors!
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Back to the comparison between various compressors in different scenarios

5 compressors: 4 scenarios, 4 different behaviors.
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Partial conclusion
Summary of the contributions of the article:

• Analyze (LSA) under weak regularity assumptions of the noise field (ξk)k .
• Provide a non-asymptotic theorem.
• Underline the key impact on convergence of the ania’s covariance Cania.
• Describe the link between, the compressor C, the features’ covariance H and the ania’s covariance

Cania.
• Show how to compute the ania’s covariance Cania.
• Study the FL setting with heterogeneous clients.

Examples of take-aways:

Take-away 6

• Quantization not Lipschitz in squared expectation but satisfy a Hölder-type condition.
• Convergence degraded, yet achieve a rate comparable to projection based compressors.

Take-away 7

• Rand-1 and Partial Participation with probability (1/d): same variance condition.
• But PP is more robust to ill conditioned problem.
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Conclusion



Conclusion of my thesis

Table 2: Summary of contributions.

Bi-compr. Heterogeneity LSR
I. 3 3 Interaction between compression and heterogeneity
II. 3 (3) Asympt. cancels impact of down compression
III. (3) 3 Beyond worst-case analysis

I. Artemis Bidirectional compression to reduce communication cost.
Key impact of memory on the convergence on non-i.i.d. data.

II. MCM Asympt, same rate of convergence as unidirectional compression.
Underlines the importance to not degrade the global model.

III. Beyond the worst-case analysis of compression.
Analyze of the compressors’ covariance.
Differences between compressors that have the same variance.
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Thank you for your attention.
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Open directions

• Evaluating the type and degree of heterogeneity within a network of clients.

• Compression and neural network: impact in a non-convex setting.

• New schemas of compression with independant coordinate compression.



Back-up on Artemis



Bulding statistical heterogeneous clients

Building non-i.i.d. and unbalanced datasets using a TSNE representation.
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A clue on the proof

We note g̃k = Cdwn
( 1

N ∑
N
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k −hi
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k).
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k = 0 for any k in N∗):
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.

• ⟨∇F(wk), wk −w∗⟩ allows to use strong-convexity,
• ∥g i

k∥
2 makes appears the constant of heterogeneity B 2 !
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A practical algorithm?

Ghost cannot be implemented in practice!
Ô⇒ Which choice do we have?
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ŵk = Cdwn(wk)

Model difference compression

wk =wk−1−γ(
1

N

N

∑
i=1

Cup(g
i
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First attempts - Variance of the local iterate is too high.

• Update compression
• Model difference compression
• Model compression
• MCM
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Figure 11: Comparing MCM on two datasets with three other algorithms using a non-degraded update,
γ = 1/L.



Relation with randomized smoothing [DBW12, SBB+18]

Smoothed version of F :

Fρ(w) ∶↦ E[F(w +ρX )], with X ∼N (0, I) .

∇F(ŵk−1) can be considered as an unbiased gradient of the smoothed function Fρ at point
wk−1, with : Fρ ∶w ↦ E[F(w −wk−1+ ŵk−1)] i.e.:

∇F(ŵk−1) =∇Fρ(wk−1)

Then E⟨∇F(ŵk−1), wk−1−w∗⟩ = E⟨∇Fρ(wk−1), wk−1−w∗⟩ which is the quantity that appears
when developping the squared-norm of the update equation in the proof:

E∥wk −w∗∥2 ≤ E∥wk−1−w∗∥2−2γ⟨∇F(ŵk−1), wk−1−w∗⟩+γ2E∥g̃k∥
2 .

But two main differences:

• Objective function already smooth,
• Noise not Gaussian: we suffer from the noise because of compression and can not control

it.
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In more details ...

Let:
• Vk = E[∥wk −w∗∥2]+32γLωdwn

2 ∥wk −Hk−1∥2

• Φ(γ) ∶= (ωup+1)(1+64γLωdwn
2)

Theorem 7 (Convergence of MCM, convex case for any step-size γ)

Under all previous assumptions, for k in N∗, for any γ ≤ γmax, we have, for w̄k = 1
k ∑

k−1
i=0 wi ,

γE[F(wk−1)−F(w∗)] ≤Vk−1−Vk +
γ2σ2Φ(γ)

N b

Ô⇒ E[F(w̄k)−F∗] ≤
V0

γk
+ γσ2Φ(γ)

N b
.



Comments on the variance term

For a constant γ,

• the variance term is upper bounded by

γ2σ2

N b
(ωup+1)(1+64γLωdwn

2) .

• impact of the downlink compression is attenuated by a factor γ. As γ decreases, this
makes the limit variance similar to the one of Diana [MGTR19], i.e. without downlink
compression:

γ2σ2

N b
(ωup+1) .

• This is much lower than the variance for previous algorithms using double compression:

γ2σ2

N b
(ωup+1)(ωdwn+1) .



Comments on maximal step-size γmax

Maximal learning rate to ensure convergence:

γmax ∶=min(γup
max,γdwn

max ,γΥmax)

where:
1. γ

up
max ∶= (2L (1+ωup/N))−1 corresponds to the classical constraint on the learning rate in the

unidirectional regime,
2. γdwn

max ∶= (8Lωdwn)−1 comes from the downlink compression,
3. γΥmax ∶= (8

√
2Lωdwn

√
8ωdwn+ωup/N)

−1 is a combined constraint that arises when controlling the
variance term ∥wk −Hk∥2.

Remarks:
• constraints are weaker than in the “degraded” framework

γDore
max ≤ (8L(1+ωdwn)(1+ωup/N))

−1
,

• if ωup,dwn→∞ and ωdwn ≃ωup ≃∶ω, the maximal learning rate for MCM is (Lω3/2)−1, while it is
(Lω2)−1 for Dore/Artemis.
Our γmax is thus larger by a factor √ω
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Summary of rates and complexities

Rates, complexities, and maximal step size for Diana, Artemis, Dore and MCM.

Table 3: Summary of rates on the initial condition, limit variance, asympt. complexities and γmax.

Problem Diana Artemis, Dore MCM
Lγmax∝ 1/(ωup+1) 1/(ωup+1)(ωdwn+1) 1/(ωdwn+1)

√
ωup+1∧1/(ωup+1)

Lim. var. ∝ γ2σ2/n× (ωup+1) (ωup+1)(ωdwn+1) (ωup+1)(1+γLωdwn
2)

Str.-convex Rate on init. cond.
(SC)

(1−γµ)k (1−γµ)k (1−γµ)k

Complexity (ωup+1)/µϵN (ωup+1)(ωdwn+1)/µϵN (ωup+1)/µϵN

Convex Complexity (ωup+1)/ϵ2 (ωup+1)(ωdwn+1)/ϵ2 (ωup+1)/ϵ2



Rand-MCM

Ô⇒ Consists in performing independent compressions for each device.

Theorem 8

Theorem 4 is still valid for Rand-MCM

• Improvement in Rand-MCM: because we average gradients at several random points, reducing
the impact of ωdwn.

• Dominating term is independent of ωdwn: we expect to reduce only the second-order term.

Theorem 9 (Convergence in the quadratic case)

Under A1, A3, A7, with µ = 0, if the function is quadratic, after running K > 0 iterations, for any
γ ≤ γmax, we have

E[F(w̄K )−F∗] ≤
V0

γK
+ γσ2ΦRd(γ)

N b
,

with ΦRd(γ) = (1+ωup)(1+ 4γ2L2ωdwn
K ( 1

C +
ωup

N )) and C =N for Rand-MCM, C = 1 for MCM.

• Quadratic functions: right hand term in Φ multiplied by an additional γ( 1
C +

ωup

N ).
• Randomization: further reduces by a factor N this term.
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Backup on the compressors’
covariance



Impact of the compression on the additive noise covariance
The additive noise writes for any k ∈ {1, . . . ,K}, as:

ξadd
k

def. 2= ξk(0)
algo 2= ∇F(w∗)−Ck(gk(w∗)) =−Ck((⟨xk , w∗⟩− yk)xk) = Ck(εk xk) .

By definition: Cania ∶= E[(ξadd
k )

⊗2] = E[C(εk xk)⊗2]. Note also that C(εk xk)
a.s.= εkC(xk) for all

operators under consideration. Consequently

Cania = E[ε2
kC(xk)⊗2] =σ2E[C(xk)⊗2] . (3)

We study the covariance of C(xk), for xk a random variable with second-moment H , more generically
we study the covariance of C(E), for E a random vector with distribution pM with second moment
E[E⊗2] =M .

Definition 4 (Compressor’ covariance on pM )

We define the following operator C which returns the covariance of a random mechanism C acting on
a distribution pM ∈PM ,

C ∶ C×PM → Rd×d

(C, pM) → E[C(E)⊗2] ,

where E ∼ pM and the expectation is over the joint randomness of C and E , which are considered
independent, that is E[C(E)⊗2] = ∫Rd E[C(e)⊗2]dpM(e).



Application to Federated Learning

Algorithm 3 (Distributed compressed LMS)

At any step k in {1, . . . ,K}, each clients i in {1, . . . , N} observes an oracle gi
k(⋅) of the gradient

of their local objective function Fi and applies a random compression mechanism Ci
k(⋅).

For any step-size γ > 0 and any k ∈N∗, the resulting sequence of iterates (wk)k∈N satisfies:

wk =wk−1−γ
1

N

N

∑
i=1

Ci
k(gi

k(wk−1)) .

Equivalently, for w ∈Rd : ξk(w) =∇F(w)− 1
N ∑

N
i=1Ci

k(gi
k(w) .

Two scenarios:

• Heterogeneous covariances: for i , j in {1, . . . , N}, possibly Hi ≠H j (covariate-shift),
• Heterogeneous optimal points: for i , j in {1, . . . , N}, possibly w i

∗ ≠w i
∗

(optimal-point-shift).

Corollary 1 (covariate-shift)

Theorem 6 holds.
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Heterogenerous covariances

How to compute the ania’s covariance using the compressor’s covariance?
We have for any clients i , j ∈ {1, . . . , N}, w i

∗ =w j
∗, thus

ξadd
k

def. 2= ξk(0)
algo 3= ∇F(w∗)−

1

N

N

∑
i=1

Ci
k(gi

k(w∗))

=− 1

N

N

∑
i=1

Ci
k((⟨x

i
k , w∗⟩− y i

k)x
i
k) =

w i
∗=w j

∗

1

N

N

∑
i=1

Ci
k(ε

i
k xi

k) .

Next for all operators under consideration we have Ci
k(ε

i
k xi

k)
a.s.= εi

kC
i
k(x

i
k), thus, with pHi denoting the

distribution of xi
k with covariance Hi , we have:

Cania = E[(ξadd
k )

⊗2] = E
⎡⎢⎢⎢⎢⎣
( 1

N

N

∑
i=1

Ci
k(ε

i
k xi

k))
⊗2⎤⎥⎥⎥⎥⎦

indep. of (Ci
k)

d
i=1= 1

N 2

N

∑
i=1

E[Ci
k(ε

i
k xi

k)
⊗2]

= σ2

N 2

N

∑
i=1

E[Ci
k(x

i
k)
⊗2] Def. 4= σ2

N 2

N

∑
i=1

C(Ci
k , pHi )

notation=∶ σ2

N
C((Ci , pHi )N

i=1) . (4)

The operator C((Ci , pHi )N
i=1) generalizes the notion of compressor’s covariance (Definition 4).



Heterogeneous optimal points w i
∗ 1/2

By definition, we have:

ξk(w −w∗)
Def. 1&Alg.3= HF (w −w∗)−

1

N

N

∑
i=1

Ci (gi
k(w)), thus ξadd

k
Def. 2= − 1

N

N

∑
i=1

Ci (g i
k,∗),

with g i
k,∗ = (x

i
k ⊗xi

k)(w∗−w i
∗)+xi

kε
i
k . We thus have, for any k ∈N:

Cania = E[(ξadd
k )

⊗2]∇F(w∗)=0= E

⎡⎢⎢⎢⎢⎣
( 1

N

N

∑
i=1

Ci (g i
k,∗)−∇Fi (w∗))

⊗2⎤⎥⎥⎥⎥⎦
∀i≠ j , Ci

k⊥C
j
k=

ECi
k
(g i

k,∗)=∇Fi (w∗)

1

N 2

N

∑
i=1

E[(Ci
k(g

i
k,∗)−∇Fi (w∗))

⊗2
]

= 1

N 2

N

∑
i=1

(E[Ci
k(g

i
k,∗)

⊗2]−∇Fi (w∗)⊗2)

= σ2

N 2

N

∑
i=1

C(Ci , pΘi )−
1

N 2 H
N

∑
i=1

(w∗−w i
∗)⊗2H ≼ σ2

N
C((Ci , pΘi )N

i=1) ,

where pΘi is the distribution of g i
k,∗ (for any k).



Heterogeneous optimal points w i
∗ 2/2

In order to bound this quantity, following [DFB17], we make the following assumption.

Assumption 8

The kurtosis for the projection of the covariates xi
1 (or equivalently xi

k for any k) is bounded on any
direction z ∈Rd , i.e., there exists κ > 0, such that:

∀i ∈ {1, . . . , N}, ∀z ∈Rd , E[⟨z, xi
1⟩

4
] ≤ κ⟨z, H z⟩2

Proposition 1 (Impact of client-
heterogeneity.)

Let W∗ be a random variable uniformly
distributed over {w i

∗, i ∈ {1, . . . , N}}, thus such
that, Cov[W∗] = 1

N ∑
N
i=1(w∗−w i

∗)⊗2, then:

1

N

N

∑
i=1

Θi ≼ (κTr(HCov[W∗])+σ2) H .

1) Before compression is possibly applied, the
noise remains structured, i.e., with covariance
proportional to H , in the case of concept-shift

2) Compared to the homogeneous case, the
averaged second-order moment increases from
σ2H to (κTr(HCov[W∗])+σ2)H .
Ô⇒ shows impact of the dispersion of the
optimal points. (w i

∗)N
i=1.



Heterogeneous optimal points w i
∗ with memory

Artemis with only uplink compression:

wk =wk−1−γ
1

N

N

∑
i=1

Cup(g
i
k −hi

k)+hi
k

hi
k+1 = hi

k +αCup(g
i
k −hi

k) ,

△! Random fields are no more i.i.d. Ô⇒ Definition 1 is no more fulfilled, invalidating Theorem 6. △!
Theorem 10 (CLT for concept-shift heterogeneity)

Under some assumption, with µ > 0, for any step-size (γk)k∈N∗ s.t. γk = 1/
√

k. Then

1. (
√

KηK−1)K>0
LÐÐÐÐ→

K→+∞
N (0, H−1

F C∞aniaH−1
F ),

2. C∞ania =C((Ci , pΘ′i
)N

i=1), where pΘ′i
is the distribution of g i

k,∗−∇Fi (w∗).

1. Settings of heterogeneous optimal points (w i
∗)N

i=1: convergence still impacted by heterogeneity
but with smaller additive noise’s covariance as Θ′i ≺Θi .

2. Deterministic gradients (batch case), we case Θ′i ≡ 0.
3. Recover asymptotically the results stated by Theorem 6 in the general setting of i.i.d. random

fields (ξk(ηk−1))k∈N∗ .
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Experiments

Covariate-shift Concept-shift
Synthetic dataset Real datasets Synthetic dataset
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Figure 12: Logarithm excess loss of the Polyak-Ruppert iterate iterations for N = 10 clients.
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